Def Fix any
$$V \in T_e G$$
, define a vector field on G by
 $X^{V}(g) := (L_g)_{*}(e)(v) \quad (or \quad (dL_g)_{e}(v))$
at $T_g G$
(vecall: $(L_g)_{*}: TeG \rightarrow T_g G$).
 $(vecall: (L_g)_{*}: TeG \rightarrow T_g G$).
 $(vecall: (L_g)_{*}: TeG \rightarrow T_g G$).
 $(Uecall: (L_g)_{*}: TeG \rightarrow T_g G$).
 $(Uecall: (L_g)_{*}: TeG \rightarrow T_g G$).
 $(Uecall: (L_g)_{*}: TeG \rightarrow T_g G$.
 $(Uecall: (Uecall: (Uecall: Uecall: Uecall:$

$$= (L_{h:g})_{\mu}(e)(v) = X^{v}(h:g)$$

In where words, $(L_{h}]_{\kappa} X^{v} = X^{v}$ (for any he for).
Thenfore, X^{v} defined by Defabore is also called a (eff invariant)
vector fixed (generated by $v \in TeG$)
Ruk One can define a vector field $X \in \Gamma(TG)$ (eff invariant
eff et sortisfies $(L_{h})_{\kappa}(g)(X(g)) = X(hg)$. However, this definition
is redundant, since any (eff invariant vector field X must
be in the form $X = X^{v}$ for some $V \in TeG$. $\frac{V}{C}$
 $X(g) = (L_{g})_{\kappa}(e)(X(e)) = \frac{V}{g}$.
i.e. X is unappely determined by $X(e)(=:v)$.
 $\Rightarrow \{ (eff invariant v.f. on G \} \stackrel{I:I}{\longrightarrow} \} v \in TeG \}$

Densite by
$$g := 1$$
 left inv. v.f. on $G = TeG (= iR^{dun}G)$
 $in edineG$
Interestingly, observents an additional structure on g (in TeG).
Prop If X. Y are left inv. V.f. on G. then EX, KJ is also
a left inv. v.f on G.
If: By Mitchenn train $(L_h)_{x}(EX, J) = [(L_h)_{x}(X), (L_h)_{x}(J)] = [X, Y]. D$
 $\Rightarrow X = X^{V}$ where $V = X(e)$
 $Y = Y^{W}$ where $V = X(e)$
 $Then define C, J on G by
 $[v, w] := u$
where v, w, u are given as above$

Example
The any wfit M.
$$\Gamma(TM) = \frac{1}{2}$$
 vector fields on M
is a Lie algebra, where $\Gamma,]$ is the bracket of vector fields.
The a Lie group G, $\frac{1}{2}$ left inv. vector fields on $G_{f}^{2}(=:g)$
is a Lie subalgebra of $\Gamma(TM)$, wint bracket $\Gamma,]$.
Maxa (IR) = $\frac{1}{2}$ nxn matrices over IR $\frac{1}{2}$ ($\frac{1}{2}$ IR^{n²}) by
 $A = (a_{ij})_{i \leq i,j \leq n}$ ($\frac{1}{2}$ IR^{n²}) by
 $A = (a_{ij})_{i \leq i,j \leq n}$

Computing Lie algebre
$$g_{g}$$
 of a Lie group G is a basis
Knowledge in survels unfol.
Example $O(IR^{n}, +)$ Lie group, and left multiplication L_{g} is
 $L_{g}(x) = x + g \implies (L_{g})_{*}(e) = 1 = identify$
 $G_{R^{n}}$
Then for any $V \in T$, $R^{n}(=IR^{n})$, we have
 $X^{V}(g) = (L_{g})_{*}(e)(v) = 1 \cdot v = V$. K constant vector freed.
 $\Rightarrow [X^{V}, X^{W}] = D$
So $(g_{R^{n}}, C, J) = (IR^{n}, C, J = 0)$, an abelian Lie alg. str.
(3) $T_{I}^{M} = S^{I}_{X} \dots \times S^{I}$ Lie group str. $(O_{I}, \dots, O_{n}) = (O_{I} + O_{I} \dots + O_{I})^{N}$
 $M = V(I) = (I + I)^{N}$

In particular,
$$L_{g}(x) = x \in g$$
 $(hwd i) \Rightarrow (L_{g})_{x}(e) = 4$
 $(e_{-i}e) \in T^{*}$
Then Situilady as above, $(g_{T^{*}}, C_{i}) = (IR^{*}, C_{i}] \equiv 0)$.
Ruk Situply from Lie algebra, one usu't tell what the Lie group
is. (Later, we will see a more surprising result.)
*Clogen: Lie algebra g_{ij} inherit (SUEXX) many properties from Lie group G_{i}
e.g. $GL(r, IR)$ (\subseteq Maxa(R)) a Lie group with matrix multiplication.
compute its Lie algebra $g_{GL(r,R)} = T_{x} GL(r_{i}R) (= IR^{*2})$.
Viewed as a watrix
For $V = (V_{ij}) \in T_{a}(GL(r_{i}R))$
 $\chi'(A) = (L_{A})_{a}(H)(V) = \lim_{t \to 0} \frac{A(H+tV) - A}{t} = A \cdot V$
 $\in T_{A} GL(r_{i}R)$
 $E = T_{A} GL(r_{i}R)$

Then for
$$v, w \in T_{4}(GL(n, R))$$
, we have

$$\begin{bmatrix} X^{V}, X^{W} \end{bmatrix} = \begin{bmatrix} \sum_{ij} \left(\sum_{k=1}^{n} A_{ik} v_{kj} \right) \frac{\partial}{\partial x_{ij}}, \quad \sum_{pq} \left(\sum_{i=1}^{n} A_{pr} w_{rq} \right) \frac{\partial}{\partial x_{ij}} \end{bmatrix}$$

$$= \sum_{iq} \left(\sum_{k,j=1}^{n} A_{ik} v_{kj} w_{jq} \right) \frac{\partial}{\partial x_{ij}}, \quad \sum_{pj} \left(\sum_{r,q=1}^{n} A_{pr} w_{rq} v_{qj} \right) \frac{\partial}{\partial x_{ij}} \right)$$
redenster
wi

$$= \sum_{ij} \left(\sum_{k=1}^{n} A_{ik} (V_{kq} w_{qj} - W_{kq} V_{qj}) \right) \frac{\partial}{\partial x_{ij}}$$
Then evaluate $[X^{V}, X^{W}] = 1$ (C) $A_{ik} = \begin{pmatrix} I & I = k \\ O & I \neq k \end{pmatrix}$

$$[V, W] = [X^{V}, X^{W}] (4)$$

$$= \sum_{ij} \left(\sum_{q} V_{iq} W_{qj} - W_{iq} V_{qj} \right) \frac{\partial}{\partial x_{ij}} \qquad \text{matrix } \in M_{nan} (R)$$

$$\frac{\partial}{\partial x_{ij}} V_{W} - W_{V}.$$
Summary: Lie algebra str. on $T_{4} \in L(n, R)$ is the commutative of $GL(n, R)$.

Notation: the fie algebra of Lie group GL (n. 1R) is downtard by

$$gl(p, R) (= (IR^{nL}, (,]))$$

 E matrix commutator.
Exc. Prove/compute the following lie algebra
 $g_{SL(n,R)} =: Sl(u, IR) = \{A \in gl(u, IR) \mid tr A = o\}$
 $g_{O(n)} =: O(n) = \{A \in gl(u, IR) \mid A^T + A = o\}$
 $g_{SL(n,C)} =: Sl(n,C) = \{A \in gl(n,C) \mid A^T + A = o\}$
 $g_{U(n)} =: U(n) = \{A \in gl(n,C) \mid A^T + A = o\}$
 $g_{Sl(n)} =: Sp(2n) = \{A \in gl(n,C) \mid A^T + A = o\}$
 $g_{Sl(n)} =: Sp(2n) = \{A \in gl(n, IR) \mid A^T + A = o\}$
 $g_{Sp(2n)} =: Sp(2n) = \{A \in gl(n, IR) \mid A^T + JA = o\}$
 $J = \begin{pmatrix} O & Inen \\ -Iman & O \end{pmatrix}$

eg. If G is an abelian Lie grup, then the Lie algebra
$$g_{4}$$
 admits
an abelian Lie str. (i.e. $C, J \equiv 0$).
If (musider inverse map 1'mV: $G \rightarrow G$ by $g \mapsto g^{-1}$.
G is an abelian grup \Longrightarrow inv is a Lie grup homomorphism)
 y_{C} inv $(g_{h}) = imv (hg) = (hg)^{-1} = g^{-1} \cdot h^{-1} = imv(g) \cdot imv(h)$.
Then the pushforward (imv) $_{4}(e)$: $TeG \rightarrow TeG$ ($\frac{1}{2}(e) imv(e) = e$).
and exploitly $v \in TeG = g$
 $(inv)_{*}(e) (v) = \lim_{t \to 0} \frac{(e+tv)^{-1} \cdot e}{t} = \frac{(e-tv+o(t)) - e}{t} = -v$
Therefore, $\forall v, w \in TeG = g$
 $- [v, w] = (inv)_{*}(e) ([v, w])$
 $= (inv)_{*}(e) ([x, w])(e) = [inv_{*}(x^{v}), inv_{*}(x^{w})](e)$
 $= [-x^{v}, x^{w}](e) = [v, w] \Longrightarrow [uw] = 0$

eq. If
$$\varphi: \varphi \to H$$
 is a Lie group homomorphism, then
 $(d\varphi)(e): \exists_{\varphi}(= Te_{\varphi}G) \to g_{H}(= Te_{H}H)$ is a Lie algebra homomphism.
Eve prove the claim above.
In a categorial larguage: Lie = catof Lie groups the two optimes
 $Ire = catof Lie algebras were to algebra
Then $\varphi \to (d\varphi)(e)$ is a function from Lie to lie.
As a concorte example: consider for fixed ge G ,
 $C(g): G \to G$ by $C(g) = L_g \circ R_{g^{T}}$.
 $(so (Lg)(x) = gxg^{T})$. This is a Lie group homomphism (1so.).
Then $d clg(e): \exists_{\varphi} \to g_{\varphi}$ is a Lie algebra homomphism.
Take $G_{Z} \in GL(n, R_{Z})$, (et us compute $dc(g)$ exploitedly.$

$$dc(g)(e)(A) = \frac{1}{dt}\Big|_{t=0} \left(g(ertA)g^{-1} - e\right) = gAg^{-1}$$

$$gl(u.u)$$

$$This is a linear transformation (for each geG(u.u)) on vectorspace gl(u.u).$$

$$\frac{1}{dt} A \xrightarrow{Lie} group vepresentation (of a given (ine group G)) is a Lie
group homomyluism $Pi \in \longrightarrow GL(v)$ for some vector space V.
$$collectum of linear
transformation of V$$

$$a Lie group G, via c(-) as above, one can construct
a Lie group tep. $Pi=c(-): G \longrightarrow GL(g)$

$$for the chain of the chain of the group of the transformation of the group tep.
$$g(g) = dc(g)(e)$$

$$This representation is called the adjoint representation of G,
$$dented by Adg(=dc(g)(e)).$$$$$$$$$$

reg. Euclidean group
$$E(n) := \mathbb{R}^{n} \times O(n)$$
 where the product str.
semidired production
is $(V, A) \cdot (W, B) = (V + AW, AB)$.
(where $E(n)$ acts on \mathbb{R}^{n} by $(V, A) \cdot x = Ax + V$)
Notation (including reflection)
 $\mathbb{R}^{n}\mathbb{K}$ Euclidean group is the isometry group of Euclidean space wint
the distance metric.
 $E(n)$ is a Lie group (b/c semi-direct product of two Lie groups
is a Lie group.)
Consider $\rho: E(n) \longrightarrow GL(\mathbb{R}^{n}H) (= GL(WH; \mathbb{R}))$ by
 $\varrho((V, A)) = \begin{pmatrix} A & V \\ 0 & I \end{pmatrix}$
Then $\varrho(UV, A) \cdot (W, B) = \begin{pmatrix} AB & V + AW \\ 0 & I \end{pmatrix} = \varrho(VA) \rho((W, B))$

Reference verminimides: Savage, Odivers and the Euclidean grup.
Ruk A (Liegmap) vep. it called farehful if it is injecture.
e.g. For (EL (n, R), the adjoint vep
$$Adg(-) = g \cdot (-) \cdot g^{-1}$$
 is farehful.
(In general, adjoint vep may not be farehful.)
e.g. $p: E(0) \rightarrow GL(n+1, R)$ is farehful.
Back to the adjoint vep $Adl: G \rightarrow GL(G)$, observe that
both G and $GL(g)$ are Liegmap (spein) and Ad is a live
grup homomorphism, then Passing to the pushforward:
 $d(Ad)(e): TeG = g \longrightarrow Ta GL(g) =: gl(g).$
this is a live algebra homomphism.
Let us compute $d(Al)(e):$

for any
$$V \in G$$
,
a linear transformetion
of (AI) (e) (v) = $\frac{d}{dt} \Big|_{t=0} \frac{AI(e+tv) - AI(e)}{t} \in identity images
if the phase is left = $\frac{d}{dt} \Big|_{t=0} \frac{AI(e+tv) - AI(e)}{t} \in identity.$
images in the form of the second of the second is the second of the$